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SUMMARY

A numerical study of the effects of viscous—inviscid inter-—
action in three—-dimensional duct flows is presented. In particu-
lar we consider interécting flows for which the oncoming flow is
not {fully—-developed. In this case there is a thin boundary layer
still present upstream of the of the surface distortion, as
opposed to the fully—developed pipe flow situation wherein the

flow is viscous across the entire cross section.
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1. INTRODUCTION

There exist several reliable methods (e.g. Vatsa & Davis
1273, Blottner 1975, Cebeci, Kaups % Ramsey 1977, McLean %
Randall 1977, Lindhout, Moek, Deboer & van der Berg 1979) for
calculating standard (or direct) three—-dimensional boundary-layer
flows with the pressure prescribed. However, such methods are
seldom useful in real flows because of the classical separation
singularity, among other things. Instead viscous—-inviscid inter-—
action generally occurs with both the pressure and the boundary-
layer displacement unknown in advance, just as in two—dimensional
flows.

Smith (1983) has studied the properties of, and a finite-—
difference approach for, interactive three—-dimensional boundary
layers in external flow problems. He found that, contrary tc the
results of two-dimensional interactions, the three-dimensional
inverse problem is an elliptic one and therefore standard foward-
marching in the flow direction, e.g. through cross—flow planes,
ie strictly inappropriate/dangerous because an explosive 3-D free
interaction can be initiated. The same phenomena can take place
in the interactive case, or whenever the pressure is not de-
scribed. To overcome these problems, Smith (1983) and Edwards,
Carter, & Smith (1987) developed an unconventional finite-
difference approach for the external three—-dimensional inverse
and triple—deck problems which addresses the major numerical
difficulties of ellipticity and violent three-dimensional free
interactions which are inherent in the standard foward-marching

schemes. In this paper the numerical scheme developed by Smith



for three-dimensional interactive flows is generalized to include
three—dimensional internal flows with viscous—inviscid interac-—
tion, such as in a transition duct. More specificélly, we study
the interactive flow field present in a duct when the oncoming
flow is not yet fully—-developed, i.e., in those situations where
the entry length isn’'t long enough for the flow to become fully-
developed. In these cases there will still be a "thin" boundary
layer on the wall of the duct and hence the possibility of
viscous—-inviscid interaction in the vicinity of the surface dis-—
tortion with a nonzero incremental displacement thickness

function, A(x,9).



2. GOVERNING EQUATIONS

For a developing flow in the geometry shown schematically in
Figure 1, it can be shown, following Smith (1976), that the flow
structure is three-tiered, consisting of a viscous sublayer I of
thickness O(Re 2/9), a main deck II of thickness Ot(Re !/,
which is an inviscid rotational perturbation of the incoming
boundary-layer flow, and a potential core region 111 of thickness
0¢1), where Re = a*u*/v is a representative Reynolds number based
on the radius a* of a straight pipe of circular cross section,
the centerline velocity U* in the oncoming flow, and the fluid’'s
kinematic vistosity, V. Furthermore, we assume that the distur-
bance (e.g. corner, hump, indentation, etc) size is of the same
order of magnitude as the perturbation to the oncoming shear
flow. Unlike most problems involving viscous—-inviscid interac-—
tions, the problem considered here reduces to a consideration of
the equations of motion in the viscous sublayer I and the outer
core region I1I. Thus in I we let

r=1-Re?3, ¥y =0(1), X = 0(1), 6 = O(1)

ur,e,X) = Re 1/Sucy,0,%) + ... ,

(2—-1)

vir,0,X) = Re >/3u(y,6,X) + 5. ,

wir,e,X) = Re /3wy, 0,X) + ... ,

p(e,xX) = Re 2/9p(0,X) + ... ,
where (r,0,X) are suitably nondimensionalized cylindrical polar
coordinates, (Q,L,&) the corresponding velocity components and B
the nondimensional pressure. Then it is readily shown that in
region I the Navier-Stokes equations reduce to the three-

dimensional boundary-layer equations, vizs




U + Vy + Wy =0 (2-2)
Uly + VUy + WUy = Py + Uyy, (2-3)
Uly + Vg + WHg = —Pg + Wy, (2-4)
with boundary conditions
U=V =W=0o0onY =F{X,0, (2-5)
where F(X,9) is a suitably normalized wall shape function such

that F — 0 as X — —o, and F(X,0+2L) = F(X,8);

U{Y,0,X) — Y, V,W,F,A — 0O, as X — -, (2-6)
and

Ua~Y + 6,8, ¥ — w, all X, (2-7)

Wy ~ =P/ (Y+A), ¥ — w, all X, (2-8)

and periodicity in ©.
Here (2-5) corresponds to the no-slip condition, (2-6) corres—
ponds to matching with the upstream incident flow, and (2-7)
results from a matching of the boundary-layer flow in I to the
inviscid rotational flow in region II. The function —A(X,9)
represents the unknown incremental displacement thickness and is
linked to the unknown pressure P(X,©) by means of the quasi-
inviscid properties in the core flow I11I.

In the core region we must solve for Pinv(r,e;X), where

Vﬁpinv = 0, $ (2-9)
along with the boundary conditions

Finy = FIX,8) @r =1,

(Pipydr = —Ayy €r =1, (2—10)

regularity at r = O.
Finally, to facilitate the numerical computations the
governing eqgquations in the viscous sublayer are rewritten using

Prandtl’'s transposition theorem, viz




y =Y — F(X,8, x = X,

v =V - UFy, — WFg, (2-11)
uly,0,x) = UY,6,X), wly,8,x) = W(Y,0,X),
pix,® = P(X,0).

Then equations (2-2) - (2-4) become

u, + vy + Wy = 0, (2—-12)
uu, + vu, + wuy = -p, + Uyys (2-13)
uw, + v, + Wy = —pg + Wyy e (2-14)

with boundary conditions

u=v=w=0 ony=090, all x,0, (2—-15)
U~y + F{x,8) + A(x,8), v — o, all x, (2—-16)
W, ~ —pg/(y+A+F), ¥y — o, all x, (2-17)
U ~ Y,y VeW,p,AitA -+ 0, % — -m, all vy, (2—-18)

and periodicity in ©.

As noted by Smith (1976,1980) these equations are elliptic
in the pressure field and therefore require a modification of the
multi-—-sweep forward-marching methods developed successfully for
two—dimensional flow problems. In the present work the ellip-
ticity embedded in the pressure field needs special attention for
otherwise an explosive 3D free interaction can be set off in a
forward-marching procedure. Consider the sum of the x—~derivative
of (2-13), the y-derivative of (2-14) and the x—-derivative of (2-
12). then defining the skewed shears in the following manner:

u=u + Wg, V = Vs (2-19)
the fundamental governing equations can be written as
a, + vg = 0, (2-20)

ud, + uv = -E+ 4, -8 (2-21)




Si{x,y,9) = uf + vu, + (wug), + ugw,
+(va)e + (wwg) g, (2-22)

and

E = p,, + Pgo- (2-23)
In these equstions u, v, and E are treated as the unknowns and
the following boundary conditions are applied

a=v=0e@y=0, all x, (2-24)

d, ¥, E — 0, —x — 00, (2-25)

G~ (A+F),, T+E ~ u(A+F),, - (A+F 2, y — o, all x. (2-26)
Note that in these variables the governing equations (2-20) - (2-
21) are quasi two-dimensional and linear in the unknown

variables.

In the core region, 111, we must solve

VE = E,, + r'E, + rlEg + E,, = 0O, (2-27)
where

E(x,r,0 = P,y * Pgs (2-28)
with

E(x,0) = E(x,1,0), (2-29)
and

E(x,r,® bounded as r — 0. (2—-30)

<
In the numerical computations we find it convenient to

introduce an alternative variable to the displacement function
Alx .9, namely B{(x,0), where

B(x,0) = A,,. ' (2-31)
The (key) matching relationship is then given by

E (x,1,0) = —(B,, + Bgy). (2-32)

We also find it-convenient to rewrite (2—-26) somewhat, using




(2-31) together with (2-16), to give

£l

b
~ j Bdx + F,, (2-33)
-

-

V+ E ~ —utB+F,,) - u? (2-34)
as y — o for all x, 6.

For convenience, symmetry about the plane 6 = 0 was taken
with reflection conditions (U,v,w,p) (X,—y,0) = (U,v,—w,p){x,y,0);
to account for periodicity, reflection conditions were also

applied at 6 = L, for some constant L.




3. NUMERICAL FPROCEDURE

The nature of the boundary-layer problem described above
suggests an iterative multi-sweep technique, using forward march-—
ing in a quasi two-dimensional manner to solve for 4, v and E
with u, w, and S assumed known from the previous iteration (or an
initial guess). Simultaneously, we use standard central differ—
ences in order to solve (2-27).

Specifically, given a guess or update for u,v,w and there-
fore S everywhere, (2-20) - (2-21), (2-24) - (2-26), are marched
forward in x, while at the same time (2-27), (2-29), (2-30) are
solved along a line of varying r; this then determines 4,V,E,E,B
(and, hence A) along a line of constant spanwise coordinate. The
process is then repeated at all other spanwise coordinates. Next
the surface pressure p{x,9) is found from the Poisson equation
(2-33). Updated values of w are found next by marching (2~14)
forward in % for each 6, subject to (2-15) - (2-17), assuming
that u,v,p and wy; are known. Finally updated values of u and v
are found by an integration of (2-19) with respect to x along
with (2-15) and (2-16). All the above steps constitute one
global iteration. Convergence isgattained when a global conver-
gence test on u is satisfied.

The main features of the numerical scheme are the following.
Two and three-point differencing in y is used for (2-20) and (2-
21), respectively, with (2-26) applied at y = y_,, two—point
differencing in x and three-point differencing in © when S is
evaluated, at a given %, location. This scheme reflects the

fact that the flow is generally parabolic in » but elliptic in y.




Three—-point central differencing is used to approximate (2-27) in
all three dimensions , and (2-32) is approximated by three—point .
one-sided differencing. Supposing we have n points in y, m points
in r, then at each x,9 station the difference approximation of
(2-20), (2-21) and (2-27), together with the interface conditions
(2-32) - (2-33), may be written schematically in the following

form (where an X denotes a non-zero entry and O a zero entry):

XX00 0 (2-20) | v |
XXXX X (2-21) a,
XXXX00 0 (2-20) Vs
XXXXXX X (2-21) i
XXXX00 o (2-20) 2
XXXXXX X (2-21) U,
XXXX00 o (2-20) Ve
XXXXXX X (2-21) e
(2-20) XXXX0000 d v, =K (3-1)
(2-21) XXXXXXOX d,
(2-20) XXXX00 B
(2-34) XOXX E=g,
(2-33) XX0 E,
(2-32) XXXX E3
(2-27) XXX E,
(2-27) | XXX ... . .
(2-27) XXX0 Ep-o
(2-27) XX Ep-1
o d b j

Here equation numbers denote? the equation which the row

approximates. Notice that

\—/1=Gl=0, Em=0. (3-2)

The solitary column of entries in the upper part of the
matrix corresponds to the E term in (2-21). {(3-1) is then amen-—
able to standard Gaussian elimination procedures. (2-33), which

determines the surface pressure, was also approximated by central




differences, and was solved by Gauss-Seidel sweeps (without
pivoting), with an over—-relaxation parameter until a prescribed
tolerance is met. The solution for w is similar to that for «
and Vv except that only a tri-diagonal matrix requires inversion
(performed again using Baussian elimination). Finally the x-—
integrations to compute u and v were performed using the trape-
zoidal rule. The overall scheme is nominally second-order accur-—
ate in the mesh widths ax, Ay, a8, and ar.

A crucial feature of the scheme developed as parrt of this
research effort is the inherent coupling between the viscous
boundary-layer solution and the inviscid core solution which is
carried out simultaneously in the spirit of the scheme proposed
by Veldman (197%) in treating two-dimensional incompressible
flows, using the Hilbert integral approach. This approach has
also recently been used by Bodonyi & Duck (1987) to succesfully

treat three-dimensional external interacting flows.
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4. RESULTS

The numerical method discussed in the previous section has
been applied to several test problems. The model problem
corresponds to that of a nonfully-developed flow upstream of the
surface distortion given by a bounded transition duct with F(x,0)
defined by

hx?(1 + ) leos(zey, x > 0O,

Fix,9) = (4—-1)
0. v < O.

and h ranging between 0.6 and 3.2.
In this case the duct undergoes a transition from that of a
circular cross section duct far upstream to that of an elliptical
cross section far downstream, as shown schematically in Figure 2.
Solutions for the fully developed flow problem upstream of
the surface distortion wherein A(x,9) = 0 have also been found
for the same duct shape. ince the solutions for both of these
problems are qualitatively similar, only the results for the
interactive case are given here. Figures 3 -7 give the axial
and azimuthal skin friction distributions and the wall pressure
distribution along the line of symmetry for several values of h.
No flow reversal was encountered gn the axial direction for
values of h considered in this report, although the azimuthal
skin friction wy does exhibit a reversal of sign sufficiently
far downstream for h > 1. All efforts to extend the computations
to larger values of h such that axial flow reversal occured were
unsuccessful. The difficulties in obtaining solutions for h >

3.2 are apparent in the pressure distribution shown in Figure 7.

A possible reason for this is that the governing equations are

11




treated in a quasi—-two-dimensional forward marching manner which
may not properly account for the transverse velocity component
when it becomes sufficiently large as in the bounded transition
duct ‘when h > 3.2. Unfortunately, within the time frame of this
research effort this difficulty was not resolved.

A numerical study of noncircular incideﬁt ducts has also
been considered. In this case the incident skin friction depends
on 6, e.g. parallel flow through an ellipse. The governing
equations are the same as before except that now the outer
boundary condition (2-16) is replaced by

u ~ A{0){y + A(x,08) + Fix,0?>. (4-2)
Here the parameter A(9) gives the azimuthal distribution aof the
incoming shear flow in the viscous sublayer u = A(8)y.

The numerical scheme discussed above has been adapted to
include this effect and representative results for the skin
friction distributions when A(x,0) = 0 and F(x,9)is given by (4-
1) are shown in Figure 8 for h = 2 and A(8) = Q.25 + sin‘e. |

Finally, as part of this research effort similarity
solutions for x — o of equations (2-12) - (2-18) for an
*unbounded" transition body shape of the form

F(x,0 ~ x!/’cos(2e $ | (4-3)
have been investigated with the goal of gaining a better
understanding of the flow structure far downstream in the duct.
By expanding in powers of ©, the governing equations can be
reduced to a set of ordinary differential equations, but in the
process several undetermined parameters are introduced. It was
found that the appropriate similarity eguations permit multiple

solutions, as well as regions in parameter space where no

12



solutions could be found depending on the range of values of the
parameters mentioned above. For further details concerning these
similarity equations, the interested reader is referred to
Bennett (1986) who studied these similarity equations in another

context.
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(a) Axial and (b) azimuthal skin friction distributions for
a variable incident skin friction duct flow.
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